Irrational Guards are Sometimes Needed

نویسندگان

  • Mikkel Abrahamsen
  • Anna Adamaszek
  • Tillmann Miltzow
چکیده

In this paper we study the art gallery problem, which is one of the fundamental problems in computational geometry. The objective is to place a minimum number of guards inside a simple polygon so that the guards together can see the whole polygon. We say that a guard at position x sees a point y if the line segment xy is contained in the polygon. Despite an extensive study of the art gallery problem, it remained an open question whether there are polygons given by integer coordinates that require guard positions with irrational coordinates in any optimal solution. We give a positive answer to this question by constructing a monotone polygon with integer coordinates that can be guarded by three guards only when we allow to place the guards at points with irrational coordinates. Otherwise, four guards are needed. By extending this example, we show that for every n, there is a polygon which can be guarded by 3n guards with irrational coordinates but needs 4n guards if the coordinates have to be rational. Subsequently, we show that there are rectilinear polygons given by integer coordinates that require guards with irrational coordinates in any optimal solution. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guarding curvilinear art galleries with vertex

10 One of the earliest and most well known problems in computational geometry is 11 the so-called art gallery problem. The goal is to compute the minimum number of 12 guards needed to cover the interior of any polygon with n vertices; the guards are 13 to be placed on the vertices of the polygon. We consider the problem of guarding an 14 art gallery which is modeled as a polygon with curvilinea...

متن کامل

Guarding simple polygons with semi-open edge guards

Let bd(P ) denote the boundary of a simple polygon P . Points p and q of P are mutually visible if segment pq lies entirely inside P . This notion of visibility gave birth to an extensive literature on art-gallery problems [3], concerned with guarding the floor of a polygonal art-gallery. Chvatal [2] showed that bn/3c point guards are always sufficient and sometimes necessary. Allowing guards t...

متن کامل

Edge-guarding Orthogonal Polyhedra

We address the question: How many edge guards are needed to guard an orthogonal polyhedron of e edges, r of which are reflex? It was previously established [3] that e/12 are sometimes necessary and e/6 always suffice. In contrast to the closed edge guards used for these bounds, we introduce a new model, open edge guards (excluding the endpoints of the edge), which we argue are in some sense mor...

متن کامل

On Some City Guarding Problems

We consider guarding a city of k vertical buildings, each having a rectangular base, by placing guards only at vertices. The aim is to use the smallest number of guards. The problem is a 2.5D variant of the traditional art gallery problem, and finds applications in urban security. We give upper and lower bounds on the number of guards needed for a few versions of the problem. Specifically, we p...

متن کامل

Guarding curvilinear art galleries with vertex or point guards

One of the earliest and most well known problems in computational geometry is the socalled art gallery problem. The goal is to compute the minimum possible number guards placed on the vertices of a simple polygon in such a way that they cover the interior of the polygon. In this paper we consider the problem of guarding an art gallery which is modeled as a polygon with curvilinear walls. Our ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017